Partial Solution Set, Leon Section 5.4

5.4.2 Given
$$\mathbf{x} = (1, 1, 1, 1)^T$$
 and $\mathbf{y} = (8, 2, 2, 0)^T$,

- 1. Determine the angle θ between \mathbf{x} and \mathbf{y} .
- 2. Find the vector projection \mathbf{p} of \mathbf{x} onto \mathbf{y} .
- 3. Verify that $\mathbf{x} \mathbf{p}$ is orthogonal to \mathbf{p} .
- 4. Compute $\|\mathbf{x} \mathbf{p}\|_2$, $\|\mathbf{p}\|_2$, and $\|\mathbf{x}\|_2$, and verify that the Pythagorean law holds.

Solution:

- (a) $\theta = \arccos \frac{12}{2.6\sqrt{2}} = \arccos \frac{1}{\sqrt{2}} = \frac{\pi}{4}$.
- (b) The vector projection in question is $\mathbf{p} = \frac{1}{6}\mathbf{y} = (\frac{4}{3}, \frac{1}{3}, \frac{1}{3}, 0)^T$.
- (d) We have $\|\mathbf{x} \mathbf{p}\|_2 = \sqrt{2}$, $\|\mathbf{p}\|_2 = \sqrt{2}$, and $\|\mathbf{x}\|_2 = 2$. It follows that

$$\|\mathbf{x} - \mathbf{p}\|_{2}^{2} + \|\mathbf{p}\|_{2}^{2} = 2 + 2 = 4 = \|\mathbf{x}\|_{2}^{2}$$

5.4.3 Let
$$\mathbf{w} = \left(\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right)^T$$
, and use the weighted inner product $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i y_i w_i$.

Let
$$\mathbf{x} = (1, 1, 1)^T$$
 and $\mathbf{y} = (-5, 1, 3)^T$.

- 1. Show that \mathbf{x} and \mathbf{y} are orthogonal with respect to this inner product.
- 2. Compute the values of $\|\mathbf{x}\|$ and $\|\mathbf{y}\|$ with respect to this inner product.

Solution:

- 1. Since $\langle \mathbf{x}, \mathbf{y} \rangle = \frac{-5}{4} + \frac{1}{2} + \frac{3}{4} = 0$, it follows that \mathbf{x} and \mathbf{y} are orthogonal.
- 2. Using the same weighted inner product, we find $\|\mathbf{x}\| = \sqrt{\frac{1}{4} + \frac{1}{2} + \frac{1}{4}} = 1$, and $\|\mathbf{y}\| = \sqrt{\frac{25}{4} + \frac{1}{2} + \frac{9}{4}} = 3$.

5.4.4 Let
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 1 & 0 & 2 \\ 3 & 1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} -4 & 1 & 1 \\ -3 & 3 & 2 \\ 1 & -2 & 2 \end{bmatrix}$, and determine the value of each of the following:

(a)
$$\langle A, B \rangle = \sum_{i=1}^{3} \sum_{j=1}^{3} a_{ij} b_{ij} = 0.$$

(b)
$$||A||_F = \left(\sum_{i=1}^3 \sum_{j=1}^3 a_{ij}^2\right)^{1/2} = 5.$$

5.4.7b Using the inner product $\langle f, g \rangle = \int_0^1 f(x)g(x)dx$,

$$\langle x, \sin \pi x \rangle = \int_0^1 x \sin \pi x dx$$

$$= \frac{-x}{\pi} \cos \pi x \Big|_0^1 + \frac{1}{\pi} \int_0^1 \cos \pi x dx$$

$$= \left(\frac{-x}{\pi} \cos \pi x + \frac{1}{\pi^2} \sin \pi x \right)_0^1$$

$$= \left(\frac{-1}{\pi} (-1 - 0) + \frac{1}{\pi^2} (0 - 0)\right)$$

$$= \frac{1}{\pi}$$

- **5.4.8** In C[0,1], with inner product defined by $\langle f,g\rangle=\int_0^1 f(x)g(x)dx$, consider the vectors 1 and x.
 - 1. Find the angle θ between 1 and x.

Solution: The angle in question is given by

$$\theta = \arccos \frac{\langle 1, x \rangle}{\|1\| \|x\|} = \arccos \left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{6}.$$

2. Determine the vector projection \mathbf{p} of 1 onto x, and verify that $1 - \mathbf{p}$ is orthogonal to \mathbf{p} .

Solution: The vector projection is given by $\mathbf{p} = \frac{\langle 1, x \rangle}{\langle x, x \rangle} x = \frac{3}{2} x$. It follows that $1 - \mathbf{p} = 1 - \frac{3}{2} x$, and orthogonality is verified by calculating

$$\langle \mathbf{p}, 1 - \mathbf{p} \rangle = \int_0^1 \left(\frac{3}{2} x - \frac{9}{4} x^2 \right) dx = 0.$$

3. Compute $||1 - \mathbf{p}||$, $||\mathbf{p}||$, and ||1||, and verify that the Pythagorean law holds.

Solution: The respective norms are $||1 - \mathbf{p}|| = 1/2$, $||\mathbf{p}|| = \sqrt{3}/2$, and ||1|| = 1; as anticipated, $||1 - \mathbf{p}||^2 + ||\mathbf{p}||^2 = 1/4 + 3/4 = 1 = ||1||^2$.

5.4.10 Show that the functions x and x^2 are orthogonal in P_5 with respect to the inner product defined by $\langle p,q\rangle=\sum_{i=1}^5 p(x_i)q(x_i)$, using $x_i=(i-3)/2$ for $i=1,\ldots,5$.

Solution: It is straightforward to find that $\langle x, x^2 \rangle = -1 - \frac{1}{8} + 0 + \frac{1}{8} + 1 = 0$.

5.4.19 Let $\mathbf{x} \in \mathbf{R}^n$. Show that $||\mathbf{x}||_{\infty} \le ||\mathbf{x}||_2$.

Solution: It suffices to show that $||\mathbf{x}||_{\infty}^2 \le ||\mathbf{x}||_2^2$:

$$||\mathbf{x}||_{\infty}^2 = \max_i |x_i| = \max_i \sqrt{x_i^2} \le \sqrt{\sum_i x_i^2} = ||\mathbf{x}||_2^2.$$

 $\textbf{5.4.20} \ \, \mathrm{Let} \, \, \mathbf{x} \in \mathbf{R}^2. \, \, \mathrm{Show \, \, that} \, \, ||\mathbf{x}||_2 \leq ||\mathbf{x}||_1.$

Solution: Let $\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$. We show that $||\mathbf{x}||_2^2 \le ||\mathbf{x}||_1^2$:

$$||\mathbf{x}||_{2}^{2} = x_{1}^{2} + x_{2}^{2}$$

$$\leq x_{1}^{2} + 2|x_{1}||x_{2}| + x_{2}^{2}$$

$$= ||\mathbf{x}||_{1}^{2},$$

and we're done.